
EUROVIS 2023/ C. Gillmann, M. Krone, and S. Lenti Poster

WebGPU for Scalable Client-Side Aggregate Visualization

Gerald Kimmersdorfer1 , Dominik Wolf1 , Manuela Waldner1

1TU Wien, Institute of Visual Computing & Human-Centered Technology, Austria

Abstract
WebGPU is a new graphics API, which now provides compute shaders for general purpose GPU operations in web browsers. We
demonstrate the potential of this new technology for scalable information visualization by showing how to filter and aggregate
a spatio-temporal dataset with millions of temperature measurements for real-time interactive exploration of climate change.

CCS Concepts
• Human-centered computing → Information visualization; Visualization systems and tools;

1. Introduction and Related Work

With modern web technologies, information visualization has in-
creasingly moved online as it is possible to create rich, engaging,
and highly accessible interactive visualizations without having to
install any software on the users’ machines. JavaScript frameworks
such as Data-Driven Documents (D3.js) [BOH11] and Vega-Lite
[SMWH17] simplify the creation of interactive web-based visual-
izations. However, these popular frameworks are based on SVG,
which scales poorly with the number of visualized data points com-
pared to GPU-accelerated rendering APIs like WebGL [DPU∗22].

Aggregate visualization [EF09] effectively limits the number of
data points to be rendered by (hierarchically) summarizing data
points into bins, where each bin shows an aggregate (e.g., average)
of the enclosed data points. The number of elements to be rendered
is thereby defined by the controllable bin resolution rather than the
data size, and visual clutter can be effectively reduced. However,
for interactive applications, recomputing the aggregates after filter-
ing or zooming may become a bottleneck.

Filtering and aggregation can be effectively parallelized us-
ing general purpose GPU (GPGPU) methods, such as CUDA
(e.g., [DPMO12]) or compute shaders (e.g., [SHCW22]). So far,
however, GPGPU methods were not available for the web and
therefore required a server and costly data transfer between ren-
der client and compute server for every user interaction. Pure
client-side approaches thus required more sophisticated solutions
for scalable aggregate visualization applications. For example, im-
Mens [LJH13] and P5 [LM19] use WebGL to store data as textures,
which are then interpreted in parallel by a fragment shader. Crossfil-
ter [cro15] uses sorted indices for rapid filtering and aggregation up
to a few million data points. Falcon [MHH19] allows users to brush
and link millions of data points within few seconds to milliseconds,
using a resolution-sensitive indexing scheme for data tiles in com-
bination with prefetching and progressive interaction.

Figure 1: Our WebGPU-based Climate Change Explorer [cce23]
performs filtering and hexagonal binning of millions of data points
in real-time. The screenshot shows the averge temperature differ-
ence between the years 1990-2000 and 2000-2013.

WebGPU is a new graphics and compute GPU API for the web.
As of 2023, WebGPU is still under active development, with exper-
imental support available in certain web browsers, while the spec-
ification continues to evolve. In addition to a streamlined shader
pipeline that includes vertex and fragment shaders, WebGPU sup-
ports compute shaders as an enhancement over its predecessor,
WebGL. With these new client-side capabilities, WebGPU has al-
ready attracted the attention by the visualization community. Usher
and Pascucci [UP20] have found that WebGPU can achieve com-
parable performance as native Vulkan applications for large-scale
scientific visualizations. Dyken et al. [DPU∗22] presented the first
WebGPU-based graph rendering framework, which uses compute
shaders for parallel force-directed layout computations.

In this poster, we demonstrate the potential of WebGPU for
aggregate visualization. We showcase the Climate Change Ex-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0007-1696-9966
https://orcid.org/0009-0004-0414-9061
https://orcid.org/0000-0003-1387-5132


Kimmersdorfer et al. / WebGPU for Scalable Client-Side Aggregate Visualization

plorer [cce23] (Figure 1), a pure client-side spatio-temporal visual-
ization application, which allows users to filter and aggregate mil-
lions of data points to explore temperature changes over selected
time spans with interactive frame rates.

2. Climate Change Explorer

The Climate Change Explorer is an interactive web application that
allows users to explore temperature differences between two spec-
ified time periods. The datasets used by the application are offered
by the Berkeley Earth Organization [ber20]. The largest dataset is
sourced by the Local Station Data and consists of 10.6 million
monthly temperature averages for 5165 distinct locations (latitude
and longitude).

We group the data into resizeable hexagonal bins, with each bin
corresponding to a distinct geographic region. Within each bin, data
points are consolidated into a single value, which is then depicted
by the hexagon’s color. This color represents the change in aver-
age temperature resulting from the comparison of the selected time
ranges, with red indicating a higher average temperature in the sec-
ond selected time range and blue indicating a lower temperature.

By default, we subdivide the world map into approximately
10,000 hexagonal bins, as shown in Figure 1. In our prototype,
users have two options to interact with the visualization: 1) They
can interactively change the time ranges to compare their aver-
age temperatures per bin and 2) they can modify the resolution of
the hexagonal grid. Both interactions require the bin aggregates to
be recomputed. In addition, users can hover the hexagons to re-
ceive details-on-demand and can set their preferred colors for the
hexagons’ color scale. The application can be found online [cce23].
Note, however, that currently not all browsers support WebGPU
yet.

3. WebGPU Implementation

The implementation consists of two main steps: pre-processing and
visualization. These steps are illustrated in Figure 2.

Figure 2: Overview of the offline pre-processing steps and the
WebGPU compute and render pipeline steps.

In an offline pre-processing step using Python, we first impute
missing values using a linear regression and then compress the data.
This is necessary because the data is originally provided as CSV
with 500MB [kag17]. Apart from removing unused columns like
city names, we use delta encoding and discretization of tempera-
ture values within the reported uncertainty range to reduce the data

size. The data is then LZMA-compressed [LZM17]. Overall, we
can achieve a compression rate of 99% compared to the original
CSV-file.

On the client side, the compressed data is loaded into browser
memory and LZMA-decompressed. For parallel filtering and ag-
gregation, we set up three compute pipelines:

1. The aggregation compute pipeline filters and aggregates
monthly temperature values according to the user-defined time
periods for each city in parallel. It iterates through the city’s
associated temperature data points, filtering entries that corre-
spond to the specified time ranges, and subsequently computes
the average temperature for both time ranges.

2. The binning compute pipeline evaluates the aggregated values
for each hexagonal bin. It finds the cities within its geographic
bounds and averages the temperature values of all contained
cities for both given time periods. Finally, it computes the abso-
lute difference between the two average temperature values. To
effectively query the cities contained within the hexagon, they
are organized in a KD-tree based on their geographic coordi-
nates. The resulting grid buffer containing the average tempera-
ture differences and the number of evaluated temperature values
is read back to the CPU for detail-on-demand tooltips.

3. The min-max compute pipeline is a parallel reduction step to
determine the minimum and maximum temperature difference
values across all bins. These are necessary to define the end
points of the diverging color scale. This operation is performed
per workgroup, i.e., across up to 32 hexagonal bins at once.

Finally, we set up two rendering pipelines: one for the world map
in the background and another for the hexagon overlay. The latter
computes each hexagon’s color from the bin’s absolute temperature
difference value and the end points of the diverging color scale in
the vertex shader.

4. Results and Conclusions

After changing the temperature ranges or the bin resolution, the
three compute pipelines are sufficiently fast to maintain interactive
frame rates. The three pipelines require an average overall compu-
tation time of <2ms (NVIDIA GeForce RTX 3050 Ti Laptop) and
<10ms (Intel Iris Xe Graphics), respectively, after user interactions
that require recomputation of aggregates. Decompression after re-
ceiving the data requires a few seconds when loading the page.

These first results show that WebGPU’s compute and render
pipelines can significantly exceed the performance of state-of-the-
art client-side solutions for aggregate visualizations, such as Fal-
con [MHH19], especially since no costly reindexing of data is nec-
essary. We therefore see WebGPU as a promising new platform for
interactive aggregate visualizations of millions of data points.

Acknowledgments

This work is partially supported by the Austrian Science Fund
(FWF): P 36453. We thank Áron Samuel Kovács and Lukas
Herzberger for discussions.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Kimmersdorfer et al. / WebGPU for Scalable Client-Side Aggregate Visualization

References
[ber20] Berkeley earth climate data, 2020. URL: https://
berkeleyearth.org/data/. 2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D³ data-driven doc-
uments. IEEE Transactions on Visualization and Computer Graphics 17,
12 (2011), 2301–2309. doi:10.1109/TVCG.2011.185. 1

[cce23] Climate Change Explorer—Online Demo, 2023. URL: https:
//ccexplorer.github.io/. 1, 2

[cro15] Crossfilter—fast multidimensional filtering for coordinated
views, 2015. URL: https://crossfilter.github.io/
crossfilter/. 1

[DPMO12] DUCHOWSKI A. T., PRICE M. M., MEYER M., ORERO P.:
Aggregate gaze visualization with real-time heatmaps. In Proceedings of
the symposium on eye tracking research and applications (2012), pp. 13–
20. 1

[DPU∗22] DYKEN L., POUDEL P., USHER W., PETRUZZA S., CHEN
J. Y., KUMAR S.: Graphwagu: Gpu powered large scale graph layout
computation and rendering for the web. In Eurographics Symposium on
Parallel Graphics and Visualization (2022). 1

[EF09] ELMQVIST N., FEKETE J.-D.: Hierarchical aggregation for in-
formation visualization: Overview, techniques, and design guidelines.
IEEE transactions on visualization and computer graphics 16, 3 (2009),
439–454. 1

[kag17] Climate change: Earth surface temperature data, 2017. URL:
https://www.kaggle.com/datasets/berkeleyearth/
climate-change-earth-surface-temperature-data. 2

[LJH13] LIU Z., JIANG B., HEER J.: imMens: Real-time visual querying
of big data. Computer Graphics Forum 32, 3pt4 (2013), 421–430. doi:
https://doi.org/10.1111/cgf.12129. 1

[LM19] LI J. K., MA K.-L.: P5: Portable progressive parallel processing
pipelines for interactive data analysis and visualization. IEEE transac-
tions on visualization and computer graphics 26, 1 (2019), 1151–1160.
1

[LZM17] Lzma-js, 2017. URL: https://github.com/LZMA-JS/
LZMA-JS. 2

[MHH19] MORITZ D., HOWE B., HEER J.: Falcon: Balancing interac-
tive latency and resolution sensitivity for scalable linked visualizations.
In Proceedings of the 2019 CHI conference on human factors in comput-
ing systems (2019), pp. 1–11. 1, 2

[SHCW22] STUMPFEGGER J., HÖHLEIN K., CRAIG G., WESTER-
MANN R.: Gpu accelerated scalable parallel coordinates plots. Com-
puters & Graphics 109 (2022), 111–120. 1

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-lite: A grammar of interactive graphics. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2017), 341–350.
doi:10.1109/TVCG.2016.2599030. 1

[UP20] USHER W., PASCUCCI V.: Interactive visualization of terascale
data in the browser: Fact or fiction? In 2020 IEEE 10th Symposium on
Large Data Analysis and Visualization (LDAV) (2020), IEEE, pp. 27–36.
1

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://berkeleyearth.org/data/
https://berkeleyearth.org/data/
https://doi.org/10.1109/TVCG.2011.185
https://ccexplorer.github.io/
https://ccexplorer.github.io/
https://crossfilter.github.io/crossfilter/
https://crossfilter.github.io/crossfilter/
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://doi.org/https://doi.org/10.1111/cgf.12129
https://doi.org/https://doi.org/10.1111/cgf.12129
https://github.com/LZMA-JS/LZMA-JS
https://github.com/LZMA-JS/LZMA-JS
https://doi.org/10.1109/TVCG.2016.2599030

